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We consider quasilinear hynerbolic partial differential

equations modeling ideal gas flow under various physical effects.

When these effects are represented as Lipschitz continuous
functions of the states, solutions to the initial value problem
are shown to exist globally in time. Our analysis is based on

the random choice method which generalizes the Glimm scheme for

hyverbolic conservation laws.

When the effects are strongly dissipative then the flow
decays exponentially to a constant state as time tends to

infinity.
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SIGNIFICANCE AND EXPLANATION

We study the initial value problem for quasilinear hyver-

bolic system of the following form:

au 3(%)

EE + % = U (U,V,x,t)
v Ju _

T i - V (u,v,x,t) .

The system models ideal gas flow where U and V reoresent
physical effects such as damping and external moving force.
Suppose that the initial data (u(x,0),v(x,0)) have bounded
total variation, and U and V are Lipschitz continuous
functions of u and v. Then the initial value problem has
an admissible weak solution. When U and V represent strong
dissipative effects, then the solution decays to a constant
state as t tends to infinity. Our analysis is based on the
random choice method which generalizes the Glimm scheme for
conservation laws.

Our assumptions are general enough to include several
important physical effects. Moreover, the random choice
method can be applied to more general quasilinear hynerbolic

systems as an effective numerical scheme.

The responsibility for the wording and views expressed in this
descriptive summary lies with MrZ, and not with the author of
this report.




AN INHOMOGENEOUS QUASILINEAR HYPERBOLIC SYSTEM
Ching-hua Wang

INTRODUCTION

We consider the initial value problem for the inhomogeneous

hyperbolic system

1
o (=)
[ %‘% + 2‘5‘;:_ = U (u,v,x,t)
HoH 2y ) (0.1)
(v,v) (x,0) = (uo(x). vo(x)) (0.2)

e S

Here uo(x) and vo(x) are bounded functions with bounded

o

total variation, vo(x) has a positive lower bound. It is 3

assumed that there exists a constant M > 0 such that U and V
do not depend on x for |x| >M . U and V are smooth

functions of u,v, x and ¢t ,

By the Riemann invariants
r=u+logv s =u-logv (0.3)

the system (0.1) can be diaglized as

[ %% - %-%% = R(r,s,x,t)
(0.4)

-y 4 + -
where R(r,s,x,t)=U + ¢, S(r,s,x,t) =U - = ;(U,V)=(U,V) (%i,exp(-‘-rs;,x,t)

Throughout this paper we also assume that there exist two

constants Kl' K2 such that . .

Sponsored by the United States Army under Contract No. DAAGZ29-80-
C-0041. g




2.
IR(rl,sl,x,t) - R(rz,sz,x,t)l < Kl(lrl-rzl + |81'82|)
. . (0.5)
IS(rl,sl,x,t) - s(rz,sz,x,t)l < Kl(lrl-rzl + Isl-szl)
oR 3S
I35 = Ky » |5l 2K, (0.6)
When (U,V) = (0,0), system (0.1l) reduces to the following
system
1
[ u  _ A -0
at ox
1 (0.7)
' v _ 3 _ 4
l 7t x

The initial boundary value problem of (0.7) has been solved by
Nishida T. [6]. When U and V do not depend on x and t, the
global solution of (0.1 and (0.2) has been constructed by Ying

Lung-an and Wang Ching-hua [7]. For general inhomogeneous system

of '
%% + ——3£E)= g(x,t,ua) (0.8)

Ying Lung-an and Wang Ching-hua [8] have proved the existence of

the global solution of initial value problem of system (0.8) for
gi{x,t,u) = g(u) e"Kt . When g does not depend on t, Liu Tai-Ping [5]
has constructed global solutions for system (0.8) and studied their
asymptotic behavior.

In general (0.1) and (0.2) does not possess smooth solutions,

and we look for weak solutions in 0<t<T, i.e., solutions satisfying

© e




+o0

” (W, + = ¢ + Up )dxdt + f g (x) 6(x,0) dx = 0 (0.9)
0<t<T -
400 | .
” (vo, - up, + Vy)dxdt + f vy (x)¥(x,0) & = 0 (0.10)
0<t<T -

for any smooth functions ¢ and ¥ with compact support in 0<t<T.
The purpose of this paper is to prove the existence of the
weak solution for (0.1) and (0.2) and study their asymptotic

behavior as the time variable t tends to infinity.




4
1. Difference Scheme
We now describe the difference scheme we use for solving
(0.1) and (0.2), which is the generalization of one in [2] and
[7]. Randomly choose an equidistributed sequence a={ai} in
(=1,1) and mesh length Ax=% At=h satisfying the Courant-
Friedrich-Lewy condition
% = const > %
for all v under consideration.
Let (4,V) (x,t, m+l, k, Ugs Voo “r'vr)) denote the solution
of the system (0.7) at the point ((m+l) £, kh) with the
following initial data
(“z . vz) x <{m+l) 2
(u,v) (x,kh) = {(1.1)
l(ur ' vr) X >(m+l) 2

We take

(u,v) (x,t, ml, k, u, , vy , ur,vr)= (u+u(u,v, (m+1) £, kh) (t=kh),

v exp (

V(G,V, (m+1)2,kh) (¢ kp))
v

(1.2)

as the approximation solution of the system (0.1) with the initial
data (1.1). In fact, using the Riemann invariants, we can rewrite

(1.2) in the following form

(r,s) = (r+R(L,s, (m+l)%,kh) (t=kh),s+S(Z,S, (m+1)L,kh) (t-kh)) (1.3) -




S.

The construction of the difference solution (u,v) (x,t)
proceeds as follows:
For each mesh length 2 , let (ul,o(X)' vz'o(x)) be

defined by the equation

[ (ag(==) , (v (==)), x < -2[1% + )2

1
(“z,o vz,o"X)= ) (uo(mz),vo(mz)), forlxl 5(21E12+1)1 and
(m-1) A<x<(m+l) 2, m=even

(uy (+=) v (+=)], x > (21712 + 1)2 (1.4)

Then we set

(u,v) (x,t) = (u,v)(x,t, m+l,o0, (“z,o'vz,c)(m“'(“z,o'vz,o) (m+2) 2))
for m? < x < (m+2)L, 0<t<h, m = even (1.5)

Inductive ly suppose that (u,v) (x,t) has been defined

for 0 < t < kh, we set
(u,v) {x,t) = (u,v)(x,t, m+l,k, (u,v) ((m+ak)z + kh=0) (u,v) ((m+2+ak)2 ,kh-0))

for mf <x <(m+2)2, kh < t <(k+1)h, m+k = even (1.6)

It is obvious that (u,v)(x,t) depends on the mesh length h and

sequence a ='{ai } , but we omit the subscript.

i s
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2. Bounds for the Difference Equation

Because we use (u,v) defined in (l1.2) as the building
block to build the difference solution of (0.1l) and (0.2), we
have to do some estimates on it.

First we consider ({,¥) (x,t, (m+l), k, ul,vz, ur,vr)
defined in Section 1. It is well known that there are three
constant region in the half plane t > kh, in which (u,V) equals
to (uz,vz), (um,vm) and (ur,vr) respectively. (um,vm) is
connected to (uz,vz) by a 1l-wave on the left and (ur,vr) is
connected to (um,vm) by a 2-wave on the left. We define
(rz,sz), (rm,sm) and (rr,sr) by means of (0.3) and define

Ar = rm - rz As = sr - sm

P((uz,vz), (ur,vr)) = = min(o,Ar) - min (o,As)
It has been proved [6] that
P (ui,vz) ’ (uj,vj)) < P( (uilvi) ’ (uk'vk) Y+P( (uk'vk) ’ (uj lvj))

. u. re an onstants V.sV,,V. are a ositive
where ul,uk, 3 are y constants, i7"V ny p

constants

Let

§r = r.-xr, , 68 = 5.~ 8

we have

(2.1)

(2.2)

(2.3)

(2.4)




U

7
| Ve Ve
- - - - \
Grt =u. + Ur(t-kh) + log(v_ exp ;:(t kh))=(u,+U, (t kh)+log(v£exp;_(t kh)
L

g‘(rr-rz) + R - R,) (t-kh)

\4 v

r _ - L :
§s, = u_ + Ur(t-kh)-—log(vr exp - (t-kh))-(u2+02(t kh) log(vzexpvz(t kh))

t r

= (sr - szi + (sr - sz) (t=kh)

where Ur'vr’Rr'sr evaluated at (ur,vr,(m+l)z;kh) and Ugs Vo o

RL' s2 evaluated at (uz,vz, (+1l) &, kh) .
Therefore by (0.5) we have

Lemma 2.1

|6, - or| K, (|6r| + [8s]) (t-nh)

ia

(2.5)
ItSst - &s|

1A

Kl(|6r| + |8s]) (t-nh)

In the same way as Lemma 3 in [7], we have

Lemma 2.2 If (ur,vr) can be connected to (ul,vz) by
only one wave, u;, ui are any constants and V;, VE are any

positive constants then

P((ui,vi), (u;,v; )) i.P((uz'vz)'(“r'vr)) + 3(|8x*-6r|+|8s*=8s|) (2.6)
where 6:*=r;-ri=(u;+ log v;)-(ui+ log vi),6;=(u;- log v;)-(ui- log VE).

In order to estimate the variations of r(x,t) and s(x,t),
we define some functionals.

For integers k > 1 , we define

F(kh+o) = [ P((u,v) ((m+a )%, kh-0), (u,v) ((m+2+a,)%,kh~0)),
m+k=even

i




and for integer k > 0

F((k#l)h-O) = Z {P((u,v) ((m-1 + ak+1)2,(k+1)h-0),
m+k=even

(u,v) (me-0, (k+1)h-0)) +

P((u,v) (m2-0, (k+1)h=0), (u,v) (m& +0, ((k+1)h-0)) +

P((u,v) (m2+0, (k+1)h-0),(u,v) ((m+l+a, ;)2 ,(k+1)h=0))}

4o 4o
Lemma 2.3. For any given T > 0,_V u(-,t) and ¥ v(-,t) the total

variation of the difference solution (u(x,t), v(x,t)), are
bounded uniformly for the mesh length h, sequence a and t < T,

v(x,t) has positive lower bound uniformly for the same parameters

1

2K1

provided k<

Proof . Since U(u,v,x,t), V(u,v,x,t) do not depend on x for
|x| > M and (0.5) there exists a constant M depending only on
T and u, (=), v,(t=) such that |s(te,t)| < M, |r(t=,t)| <M for

0 < t<T, provided h is small enough.

It follows from that U(u,v,x,t), V(u,v,x,t) do not depend on

x for |x| >M again and (0.6) that

)} P((u,v) (m -0, (k+1) h=0), (u,v) (mg +0, (k+1)k-0)) <
m+k=even =

_<_ h 2 {lR( {r,s) ’.m+ak)9. +kh-0), (m-1)g +kh) - R( (I,S) (m+ak)2' +kh-0) r

m+k=even

(m+1)2 ,kh) | +|s((r,s) ((m+ak)£ 'k -0),(m-1) ,kh)- S({r,s) (m+ak)z kh=0),

(m+1)2 ,kh)[} < 4K, Mh .




+® l +o

It is obvious that V r(+,nh+0) + V s(*,nh+0) < 4F(nh+0) + 4M.
- Q0 -0

Then from Lemma 2.1, Lemma 2.2, we obtain

4+ 400
F({(n+l)h-0) < F(nh+0) + 6K1h(V r{*,nh+0) + V s(*,nh+0)) + 4K2Mh

< F(nh+0) (1+24K h) + (24K Mh+4K,Mh)
Because F((n+l)h+0) < F((n+l)h-0) we have

F((n+1)h+0) .< F(nh+0) (1+24K;h) + 24K, Mh+4K,Mh)

Let F(0) = } P((u
m=even
+o +x

F(0) S-Z rols) + V s,(-), where ro(x) = uolx) + log vy (x),

-0

0.vo)(ml),(uo,vo)((m+2)9,)), then we obtain

so(x) uo(x) - log v, (x).

After simple computation we get

K, M 24K1T

F((n+l)h+0) < (F(0) + R + 72— ) e

1
+ to - KM 2KT
< (Vr. (¢) + Vs, (¢) + M+ e for (n+l)h< T
-, 0 ,ce O 51(1
and thus
+ o + o + o 4+ _ KzM 24K1T
Vr(s,nh+0) + V s(+,nh+0) < 4(V r . (*) + Vs.(*) + M + —= Ve
- 0 0 6K
-~ - - -0 1

+ 48 for nh<T

htea il A GALE 2T LI AV S
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It follows from that uo(x) and ro(x) are bounded functions

R VTSP

with bounded variation and vo(x) has a positive bound, Lemma 2.1

and ‘h<i%- that
1
+oo +o f'
Vr(e,t) + Vs(.,t) <Q for t < T (2.7) :
-“ -Q — i
Fo Fo _ KM 2K T K,
where Q = 8 (V ry(e) + Vsy(e) + M+ =~ )e +g-M+ M. ,
3 -0 -0 - . 1 l
| 3
- ¥

Thexrefore f

|r(x,t)| < 2M + @, |s(x,t)| < 2M + Q, |u(x,t)|< 2M + % for t<T (2.8)

- 20+ 2w+ $ ,
e <vix,t) <e for t < T (2.9) 1
1
3
+ao0
Vou(-,t)< Q/2 for t < T (2.10)
-0l
4+ 1 2M+ g' .
V v(.,t) <3 Qe for t < T (2.11) ;

Q.E.D.

-

Lemma 2.4. For any given X >0, there exists constant D depending

only on U,V, uo(x), vo(x), T and X such that

X . |

I(X) = f (lu(x,tz) - u(x,tl)l + lv(x,tz) - v(x,tl)l) ax < r
=X

<T (2.12)

< D((t,-ty) + h), 0« tyrt,

provided h is small enough.
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Proof: For definiteness suppose £ < t2 and there is a pair
of integers n,k such that nh < t, < (n+l)h <...< (n+k)h< t,

< (n+k+l)h. It is obvious that

I(X) < I;(X) + I (X)

where
k+l X
I,(x) = ] (Ju(x,(n+i)h+0) - u(x,(n+i)h-0| +
i=0
-X
+ |v(x, (n+i)h+0) -v(x, (n+i)h=-0)] ) dx,
x X
Izlx) = '2 r (| u(x, (n+i+1)h=~0) - u(x, (n+i)h+0)| +
. i=0 “x-
+ | v(x, (n+i+1) h-0}= (x, (n+i) h+0)|) dx
X

+-f (Iu(x,tl) - u(x,nh+0)|+|v(x,t1) - v(x,nh+0) | )ax +

-X
X

+ f (Iu(x,tz) - u(x, (n+k)h+0)| + [v(x,tz) - v (x, (n+k)h+0) | ) dx.
-X

t,-t
It is not difficult to show that I, x) < 22([ 2h 1 ]+ 3}

400 +x
sup _Y u(*,t) + sup_Vv(-,t)
- 0<t<T 0<t<T

For x € ((m-1)%,(m+l)%), m+n+i+l = even. Using (1.2) and (2.9)

we have

Y 25 NP

o




12 L] 1
(m+1) £ «
u(x, (n+i+1)h=0) - u(x,(n+i)h+0)| < Vv u(x, (n+i)h+0) + |u |h.
‘ (m-1) %
(m+1) % . |
| ¥(X, (n+i41)h=0) - y(x, (n+i)h+0)[ < V  r(x,(n+i)h+0) + 2|v |h j
(m-1) 2 : [

provided h is small enough, where 1

(V") = ((0,) (x, (n+i+1)h=0), m%, (n+i)h) .

P

X
For [ (ju(x,t;) = u(x,nh+0}| + |v(x,t) - v(x,nh+0)])dx and
X

+
PRI SIY 157 g%

fx(|u(x,t2) - u(x, (n+k)h+0)| + lv(x,tz) - v(x,(n+k)h+0)| ) dx

-X
we have similar estimate.

Combining the above estimates, we obtain

+o +
I, 2{(2 sup V u(-,t) + sup V x(-,t)| + '

Q0<t«T ~e 0<t<T ~w

atin SR

' t. -t x

* * .

+2Xh{ sup U +2sup V 2h 11y 4 1
m+n+i+l=even m+n+i+l=even

Since (2.8)(2.9(2.10)and (2.11), we .obtain (2.12). Q.E.D. L
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3. Convergence of the Difference Solutions

Because (u,r)(x,f) is not an exact solution of (0.1) in the
strip kh < t (k+1Yh,k = 0,1,..., E ¢, 80 in order to prove the
. existence of the weak solution of (0.1} and (0.2) we first prove
two lemmas.

Lemma 3.1. If x' = Elt' is a l-schock wave of (u,V)
(x,t,(m+1),k,(ul,vz),(ur,vr)) in the domain {(x,t): m < x <(m+2)2% ,

kh< t < (k+1)h, m+k = even} then

1 :
|E, Tu) = (V< we' (Ju ~u, | + |v -v,]) (3.1) F
4
|€,Iv] = Tull<we'(w-u, | + v -v,]) (3.2) ’
provided h is small enough, where x' = x =~ (m+1) L, t' = t - kh,
the constant w depends only on U,V, uo(x), rg(x); (uy,vy) = (u,v)

((mta, ) £,kh-0),(u ,v ) = (u,v) (m+2+a, )2, kh=0;; (u,,vy) is the “
constant solution being connected to (ul,vz) by l-shock wave on .
the left; I ] denctes the jump of the quantity in bracket across

the l-shock wave.

For x' = Ezt' is a 2-shock wave of (i,V), we have same king

-

of result.

Proof: It follows from that (ur,vr) and (um,vm) satisfy Rankine-

Hugoniot condition and (0.5) (2.8) (2.11) that

1 1 .1 1
El (Um-u ) t ' - <( vmt I) - Vm>- < 1’2 tT - VQ: >
Ve ;;— Vi v

lg, 1wl - 131] <
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.
Vz ' th
v v
L m
< 18 (uy U)t'|+|%f e"dn-;l;f e an | <
270 m‘0
v,t'
N LA
2 Mg U]+ (vg=v) (= =, [ V* eTMdn + 5 e TV 52 () |+
V* * *
0
e
v -
+ | % f m e ndn|_<_ wt'(lum-uzl + |vmfvz|)
By e
B
Vi

V, = V(u,,v,, (m+1)2,kh), V = V(u,,v_, (m+1) 2, kh) ;

Lemma 3.2. If (u,v) is a l-rarefaction wave in the subdomain

? .
Q, = {(x,t); EX < %5 <€., 0¢ t'< h} of the domain 2 = {(x,t),
1l 0 t' 1l

me <x < (m+2)g ,kh < t < (k+l)h, mtk=even} ; then

lf(%t+%¢x+U)dth+ f u¢ds-$¢dt‘

91 301
3 2 bt &t
< R.h™ + R,h“( Vv u(kh+0) + V v{(-,kh+0)) (3.3)
- 1 2 E. t! E' t?

l[ (v Xe™ uxx+v)dxdt + I vydx - uydt]|
nl an

t £t
< Ryh3 + Rn?( ‘\1 u(*,kh+0) + vV v(-,kh+0) (3.4)
l 2 El tl Elotl

where (Uzlvz) = (U,V) (uﬂ rvzr (m+1) 2 ,kh), (Umrvm) =(U,V) (um'Vm: (m+1) £ ,kh)

Ve = Gum + (1—9)v2, 0<6<1 . The proof of (3.2) is similar. Q.E.D.

A_w@“,"r
AR T, - Y-S0 3 )
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provided h is small enough. :

- Where x' = x - (m+l)%, t=t-kh; (Q,V) = (4,V)(x,t, (m+l) ,k,(u,v)
(m+ak)l,kh-0),(u,v)((m+2+ak)2, kh~0)), ¢ and x are smooth

functions with compact support in 0<t<T ; Rl and R2 are comstants

depending only on U,V,u,(x), r, (x), ¢ and x ,(U,V) = (Ufu,v,x,t),

v(uIVlet) ).

For (u,Vv) is a 2-rarefaction wave .in the subdomain

[ ] N
92 = {(x,t);5'1<’éﬁ-<§2, 0<t<h } of the domain 2 , we have same kind !

of result.

Proof: (4,V), as a l-rarefaction wave in Ql' satisfies (0.7) in

U T PN USSR S

91 in classic sense. Because of (0.5) and (2.9), U and V, as the

functions of u and v, satisfy Lifshitz condition with the Lifshitz

constant depending only on K, M and Q.

It follows from (1.2)(l1.6) that ‘

u _ 3% . 23U 20 30 39 ,.,
3~ 3 T O =X T % x ¢ (3.3)

IRV SUU A Y PO

- U 2u ., U ¥ U 1‘

5t T € T oy 9t T o stttV (3.6) ;

.

A -~ L

v vt! ‘

v _ W % . (e-1.. ¥ 5 3V 3@ 1

> = 3x © + (V) "t' e (V'ET;'; = * N
5 3V W _I W




16.

(T.LE') (i’E') - - . (gt
v = -1 ¥ ', 3V 3 X IV G 3 + v (3.8)
e + (v) t' e (v -b—ﬁ_ T‘E + ¢ Y 3¢ v 5t ) e

ik
[
S

~ o

where (U,V) = (U,V) (&,¥, (m+1)%,kh) .

Je
Let Jl(x,t)= %% + 5= " U, then we obtain
. eu
-~ ~ - ~ -~ ~ v
= du _ 3y 2du 3U 3y ), -2 e
Jl(x,t) = 3% +(aﬁ 3 + a;, at)t + U (v) e .
(Ve (vE'y
W v - =1 Y [, v @ ~3\7_32'_~_8_!>
(.Z‘? e + (V) t' e (V -—l; 3% + 5 % v %
I ' nd ]
(.Vt'l - . (Vt )
\2 -2 3% W 3 . 30 o -3 ¥
U= (l-e v -+ t' [{— —_— - ' (V) e *
( ) (V) X (aﬁ t 30 ot
~ 3V 3 . ~ WV W o W

Using (0.5) and (0.6) for estimating U - U, then we get

1 1 ~ :
!! (u¢t + 3 ¢x + U¢)dth-+f u¢dx - 7 ¢dt = f[ Jl(x,t)¢(x,t)dxdt <

30,
Q
1 £t gt

<Rh3+ Rh{ V ul(-kh+o) + V v(-,kh+0) \.

— l 2 ] ] [ [}
£t Ert
0 0

The proof of (3.4) is similar. Q.E.D.

We use the difference scheme introduced in section 2 and take
L.
the ratio of the mesh lingths Fi = e 2i+Q and h; = 21 « When
i 2
i is large enough, the difference solution (u,v)(x,t) can be defined

in 0<t«<T.
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17.
The difference solution (u,v(x,t) is discontinuous at the
segment {(x,t): x = mi;, khy <t < (k+1)h,, m+k=even} . But it
follows from (0.6), (2.8) and (2.11) that
(k+1)hi (k+1)hi
| (u(m ,+0,t) - u(mL.=0,t))yx dt| < (t=kh.)| U((u,v) ((m+a, )R, ,
kh i i = Jxn i k'"i
i i
(n+1)2,,kh;) = U((a,v) ((m+a, )2, (m-1)2,,kh|x dt < E hz (3.9)
(k+l)h,/ .
1 1 3
|f (r(mli+ 5,6 V(mz.-o,t}"dt' ZER} (3.10)
i
khi

provided iAis large enough, where E is a constant depending
only on K,, M and Q.

With Lemma 3.1, lemma 3.2 and (3.9),(3.10) in mind by the
way similar to these in the section 4 in [7] we obtain the

following existence theorem.,

Theorem 3.1, Suppose that uo(x) are bounded functions with
bounded variation, vo(x) has a positive lower bound, U(u,v,x,t),
V({u,v,x,t) are smooth functions satisfying (0.5) (0.6) and do not
depend on x as |x|>M, where M is any given positive number,
then for any given T >0 the initial value problem (0.1) and (0.2)

has a weak solution in 0< t<T.

i
B




18. !
|
4. Asymptotic behavior é
Now we consider the asymptotic behavior of the solution of
(0.1) and (0.2) under the following additional restrictions on
U and V:
R depends only on r, and R'(x) < =~ a; (4.1) ‘
S depends only on s, and S'(s) < -« (4.2) ;
where a is a positive number.
Lemma 4.1. Suppose that R(r) satisfies (4.1), then the
initial value problem
dr
ac = R(r) (4.3)
r(0) = o (4.4)
possesses a unique solution r(t,ro) satisfying
t for t > 0 (4.5)

where I is the unique solution of R(r) = 0; and for

.

r0+R(r01t R 0 <tc<h

rn (t,r,)=4 r, (h,r,) + R(r_(h,xr,})(t-h) , h < t < 2h
h 0 h 0 h™'"0 - = + the Euler's

-

T, (nh,xo! + R(nh,rg) (t=nh), nh< t < (n+l)k

L seoe

difference solutions of (4.3)(4.4), the following inequality holds
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1

— - - |

|rh(t.ro) -r| < lr-rOI e Ot for t >0 (4.6) )

. 1

. provided h < T - , 1
Proof. Since the assumptions (0.5),(4.3) and (4.4) possesses a (?
unique solution r(t,ro) for all t > 0. By (4.1) we have }*

a(xr(t,ryl- T)
dt

= R(r(t,ro)) = -a(r(t.ro)- r) .

and therefore (4.5).
Now we turn to'prove (4.6). .
Without loss of generality we assume I, # ¥, because of

L (t,T) = r(t,7).

For definiteness suppose Xy > r. It follows from (0.5)(4.1)

that for any r > r and ty > 0 the initial value problem

dr

3t = R(r) . .
| . has a unique solution r(t,r,t;) such that
r =T
tBtO
2 -~
a r(t,r,to)
—_— > 0; therefore
dt
1
L
r < rh(t,ro) < r(t,ro) for t>0 (4.7)
1 L] !

provided h < 5

Similary for r,< T we have

r(t,r°)< rh(t,r°)< r for t>0 (4.8)

»

’t By (4.5)(4.7)(4.8) we obtain (4.6).

v s
H w-%crm . - 4O AT AN T PN Y e B = 1




! Lemma 4.2. Under the assumption (4.1) and (4.2) we have

F(k+1)h-0) < (1-(l-c)oh)F(kh+0), for k > 0 (4.9)

provided h < min(% 5% ), where c¢ 1is a constant depending only

+c0 +o 1
on _V uo(-\, v v0(~) , the positive lower bound of vo(x) and

the equation (0.7).
Proof: Now we consider (ﬁ,%)(x,t,(m+l),k,ul,vl,ur,vr) defined

in section 1 again and first remind some results in [2] and [7].

There is a c2 function f(x) satisfying

f(x) = constant for x > 0
0< f'(x)< 1, f"(x) < 0, for x < 0 (4.10)

lim f'(x) =1

X+ =

such that (um,vm) is connected to (u ,v ) by l-wave if and only
if

s - s, = f(rm - r (4.11)

m L 2)

where r, - r > 0 means that the l-wave is a l-rarefaction wave,

L

and I - Iy < 0 means that the 1l-wave is a l-shock wave; and

(ur,vr) is connected to (uz,vz) be 2-wave on the left if and only
if

vr -, = f(sr-sm) (4.12)

8 -8 >0 (sr - 8_ < 0) means that the 2-wave is a 2-rarefaction

r m - m

wave (a 2-shock wave respectively).

s

s e

ey ?‘"‘.‘ &“»“,__ it ¥

'“.‘_4_; s
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By the notation of (2.1) and (2.4) we have ;f
i
}f
§r = Ar + £(As) , §s = As + f(Ar) (4.13) F
Because of (4.10) we get |
|
Ar = p(8x,88) , As = q(8r,88) (4.14)
where p,q € c2. It is easy to know from simple computation ﬂ
that ﬂ
b i
[ 9 - 1l 3q - ~-£'(p) : ¢ 3
a(dxr) 1-f'(p)£'(q) a(éx) 1=f7(p)f' (q) g
; (4.15)
) . _=f'(q) 3q - 1
L 8535) l-f'lpgf'(q) 9(0s) 1=f£'(p) £’ (q)
Suppose that (um,vm) is connected to (ul,vg) by a l-shock
wave on the left. Since (0.5)(1.3) and (4.1), then we have
Sn"Sy <(sm + hs(sm)) -(sz+hs(s2)) <0
f r,ry < (ry+ hR(r )) =(ry+hR(xr )) <0 , "
therefore P((ul'h' V!"h) ’ (um'h’ Vm'h)) < P(uzlvl) [4 (‘-‘“"vm)) (4116)
where Uoh T ui+U(ui,vi)h Vimm = Yy exp ( v )

i can be 4, m, or r.
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Suppose that (um,ym) is connected to (uz,vz) by a l-rarefaction M

wave on the left. Since (0.5)(1.3) and (4.1), then we have

s + hS(sm) = + S(s

m Se z’

——— —————

0 < ) + hR(rm) - (rz + hR(rz)

therefore

P((uz,h' vl;h)' (um,h' Vm'h)) = P((uzrvz)r (uml Vm))= 0 (4.17)

The same kinds 6f results as (4.16) and (4.17) can be obtained

for a 2-shock wave and a 2-rarefaction wave in (Q,V) respectively.

By combining the estimates (4.16),(4.17)and (2.3) we have

F((k+1)h-0) < F(kh+0) for k >0 (4.18)

4+ +o
therefore for EZ r(.t) and EX s(.,t), the decreasing variation

of r(x,t) and s(x,t) on the interval (-», +»), the following

inequalities hold

+ +o 40

DV r(°t) < F(0) < (Vryle) + V s,()) =0Q 7_
]

e oo +o (4.19)

DV s(*,t)< F(O)X (V xry(s) + V s,5()) =@Q
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It is not difficult to know from (4.20) that the strength of

the shock wave in (1,¥) is less than Q. i.e.

lax] <@ for 1-shock wave (4.20)

las| <@ for 2-shock wave (4.21)

Since (4.10) then

0 <c=£'(-0) <1 (4.22)

Now we are ready to obtain the refinement of (4.16) suppose that
(um,vm) is connected to (uz,vz) by a l-shock wave on the left. By

(4.15) we have

P((ul,h' vz'h)l(um’hl Vm'h)) - P((uzl vz)l (umlvm)) =

r Sh

1-f'(q) _ )
Eme @2 @ c) ((8x,=6xr) +
s

[
n
1-f'(p)
T=F(pIE' (q) OF *!

O, O

r
+ (85, -6s) 2> (1-c)h [(R(xp) - R(xry) + (S(sp) - S(s,))1]
> = (l-c)a h Ar (4.23)

where Grk = (r_ + hR(r;)) - (r, + hR(rzj)

8g, = (s_ + hs(s_)) - (s, + hs(s,))
m m £ L

h

Suppose that (ur, vr) is connected to (um,vm) by a 2-shock wave

on the left. Similarly we have

B
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3
POy he Vp,nt e (g pe Vi, p)) = BPOug o) (up,vp)) > |
> =(l-c)a h As (4.24)
b By combining the estimates (4.23) (4.24) (4.17) and (2.3), we have 1

We turn now to proving the existence of the weak solution
of (0.1) and (0.2) and studying its asymptotic behavior. We use
(u,v) (x,t) to denote the difference solutions of (0.1) and (0.2)
before for convenience, although the difference solutions of (0.1)
and (0.2) depend on the mesh length h and the sequence a. 1In
order to distinguish between the difference solutions of (0.1)
and (0.2) and the weak solution of (0.l1l) and (0.2), from now on
we use (uh,vh)(x,t) to denote the difference solutions of (0.1)
and (0.2) and (u,v) (x,t) to denote the weak solution of (0.1l) and
(0.2).

Theorem 4.1. Suppose that uo(x), vo(x) are bounded functions with

bounded variation and do not depend x as |[x|> M, vy(x) has a
positive lower bound. U,V are smooth function satisfying (0.5),(0.6) .

(4.1) and (4.2) then the weak solution (u,v)(x,t) of (0.1) and (0.2)

exists in t > 0 and satisfies the following decay laws.
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T -(1-c)at -at (4.25)
V ou(-,t) <20, e +Q, e
+o -(1-¢) at -at
V log v(-,t) < ZQl e + Q2 e (4.26)
T+8 -(l-c)at _ 3 -at
Iu(x,t) —5—| 220, e +3Qe (4.27)
Ilog vix,t) - 555 <20, e~ (1-clat % Q, e 0t (4.28)
+® 4 1 _ _
where Q; = _Z ro(+) + -X sg(*)s Qy = i(lro(-w)-rl + |r0(+w)-rl

+ lso(-“)-gl + |s°(+9)—§|), T and s are the unique solution of

R(r) = 0 and S(s) = 0 respectively, c = £'(-Q,;).

Proof. If we choose the ratio of the mesh lengths

T xk+g*

% = const > e 2 + 20

where r* = max(ro(-w),iﬁ,s* = max(so(-m),g), and h = 271 , where
i 1is large enough such that h < min(%, %k ) » then the difference
1

solution (uh,vh)(x,t) defined in section 1 can be defined in all

*
half plan t > 0 because that |rl(-=,t) <r, I8P (==, t) ] < s*
+c0 +o
by Lemma 4.1 and V r(+,t) €20, , V s'(+,t) <20, by (4.19).

-0 -Q0
By Lemma 3.1 and Lemma 3.2 we can obtain the existence of the weak
golution (u,v)(x,t) of (0.1) and (0.2) in t > 0 in similar way’

to that in theorem 3.1.

©
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|
Using (4.9) and F(kh+0) < F(kh-0), k = 1,2,..., we obtain ;
!
F(nh+0) < (1-(l-c)ah)"F(0) = (1-(1-c)ah)”Q; ., !
then thus .
DV r(-,nh+0) < (1-(1-c)ah)”Q
- o
< (4029)
+o h n y
DV s (-,nh+0) < (1-(1-c)ch) Q, 1
L == :
1
It is not difficult by the means similar to this in Lemma 4.2 to *5
know that ;
) :
+* 1 * n b
DV r'(e,t) <DV r (+,nh+0) ™
) , for nh < t < (n+l)h. (4.30) '
o o .
pv s (-,t) <DV s (+,nh+0)
- 00 -0

\
let i tends to infinite, by (4.29) we have

[ 4o ¥
-{l=-c)at
DV x(-,t+0) < e . -
- (s 120y for t = 3, k and k,j are any
positive integers (4.31)
+ -(1-
DV s(-,t+0)< Q e (1-c)at

\ - : |

§ A d e ol mtmn ok G2 vt 4 S

Therefore by (4.30) and (4.31) we obtain

[ 4
Dv r(.lt) -<'Ql

9 for t > 0 (4.32) . \
=(l-c)at

e~ (l1-c)at

NSRRI PUNS. NI FRESNERLE SRS

+»
DV s(-,t) < Ql e

| -=




It follows from (4.6) that

t

[rh(-w,t)—?i < |x,(-=)-T| e o% , lrh(+w,t)-§|< £, (+2) =F|e™®
- 0 - 0

at

18" (-2, £) -5 < |8 (-=)-5]e™®

1A

. 8% (4=, ) -5 < lsg(+=)-5le™®

therefore

|z (-=,t)-T|< Iro(-w)-?le-at v X+, t)-T| < lr°(+w)-r|e-at

|8 (-=,t)-8|< Iso(-m)-gle'clt , 1P+, t)-5] < lso(+eo)—§|e'°‘t

Thus then
[ 4o
vV or(e,t) < 2Qle'(1‘°’“t + (lrgl==)-T| + |ry(+=)-F]1e™t
+c
v st < 20717908 4 (15 (<2)-F] + |5 (+=)-s])e™O"
- . —(_-at
le(x,t)-T| <V x(:,t) + Iro(-w)-rle
- el - =at
|s(x,t)-s < V s(-,t) + Iso(-w)-s[e @ .
L -0

The estimates (4.25),(4.26),(4.27) and (4.28) follow from (4.33

Q.E.D.

¥
£
i
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t
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(4.33)

).

]
b




28.

5. Entropy Condition

The entropy condition for quasilinear hyperbolic systems of
conservation laws has been extensively studied by Lax, P.D. ([3],
Dafermos, C.M [l1l] and Liu, Tai-Ping [4]. Here we will prove
a theorem about entropy condition for the weak solution of (0.1)

and (0.2) obtained in Section 3.

Theorem 5.1. Under the same assumptions of theorem 3.1, the
weak solution (u,v)(x,t) of (0.1) and (0.2) constructed in

theorem 3.1 satisfies the following entropy condition:

1 .
ff (9 E + 9, F + g(uUu - 5 v)dxdt > 0 (5.1)
0<t<T
for any non-negative smooth function g with compact support
2
in 0< t <T; where E(u,v) = %— - log v, F(u,v) = % .

Proof. Suppose (um,vm) is connected to (uz,vz) by a l-shock wave
with the speed of propagation s, on the left in the solution of
(0.7), let G(vy,(u,,vy)) = sy (E(u ,v ) - E(ug,vy)) = (Flug,v) -

F(uz vz)), then we have
G(vz,(uz,vl) = 0

9
3;5 G(vm.(uz,vl)) >0

because 5, <0, Vi > \f for a l-shock wave in the weak solution

of (0.7).




of (0.7).

t '-t-nh .

Using (3.1) (3.2), we have

Therefore

G(vm.(uz,vz)) >0
Suppose
with the speed of propagation

Let G(vr,(um,vm)) = sz(E ur,vr) - E(um,vm)) -

(Fu ,v,) - F(u ,v_ )), then similarly we have

G(vr. (‘h"’m)) >0

(5.2)

(ur,vr) is connected to (um,vm) by a 2-shock wave

s, on the left in the solution

(5.2')

Using (3.3) (3.4) (3.9) and (3.10), we have

(gt Eh + Iy Fh + g(uh Uh vh

- —E-)dxdt = 0(h) + I
t<0<T

1
v
Here

I
)

I = ) g(x,nh)(E(uh,rh)(x,nh-O) - E(uh,vh(x,nh+0))dx
n=1

h h
I,= ] fh g(s, , [E") - [F'])at’
2 min=even Jo, = memed
i=1,2
where Sm,n,i

= E((u®,v?) (x,8)), P

12 = O(h) + 1'2
', = ]

h
(s (E(u,v)) = (F(u,Vv))dt’
m+n=even fog men,1 ’ :

+ 12 (5.3)

(5.4

(5.5)

is the speed of propagation of the i-shock wave in

(a,v)(x,t(m+1),n,(uh,vh)(m+an)z,nh-0), (uh,vh)((m+2+an)£,nh—0),

[*] denotes the jump of the quantity in the bracket
across the shock wave. Eh

= F((u®,vP) (x,8)).

(5.6)

‘}kgyiﬁt L

4
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By (5.1),(5.2), we have

(5.7)

The entropy condition (5.1) follows from (5.3) (5.4) (5.5)
(5.6) and (5.7).

Q.E.D.

R —
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